If it's not what You are looking for type in the equation solver your own equation and let us solve it.
41f^2+16f=0
a = 41; b = 16; c = 0;
Δ = b2-4ac
Δ = 162-4·41·0
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-16}{2*41}=\frac{-32}{82} =-16/41 $$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+16}{2*41}=\frac{0}{82} =0 $
| 3z^2+19z+6=0 | | 124=2r | | (10x-11)(3x-2)(3x-1)=180 | | 7/m=63/6 | | -12x+24=−36 | | 5z+3=27 | | 9-(2-5h)=3h | | 5x+1-2x=-8 | | -2(5t-3)+3t=2t-7 | | 5(x+5)=30(2x–10) | | −12x+24=−36 | | d−44=49 | | 39=b−194 | | 12-4h-2(h-1)=4(h-4) | | –22h=572 | | 16h=416 | | 3+18x=-14+x | | 3x+-4=-2x+6 | | 5(-3x2)(x-3)=-4(4x+5)=13 | | 3+18x=-14+x | | t+48=87 | | H=-5t^2+30t+13 | | 4-2x=19+3x | | 29m^2+36m=0 | | d+50=88 | | 41z^2-30z=0 | | X-4(2x+8)=6-7x | | 37u^2-16u=0 | | 25/4(5x-4/5)+29= | | 8=c−35 | | u+1=13 | | -10x=12-9x |